
JOURNAL OF COMPUTATIONAL PHYSICS 54, 87-94 (1984)

Computational Methods in Linear Algebra

J.M. VARAH

Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada

Received June 15, 198 1

This paper is the written version of a talk given at the Workshop on Computational
Seismology Salishan Lodge, Oregon, March 24-26, 198 1. State of the art and recent
developments in computational linear algebra, including linear systems, least squares
techniques, the singular value decomposition, and eigenvalue problems are reviewed briefly.

1. INTRODUCTION

This paper attempts to survey recent developments in computational linear algebra;
it was presented to an audience of seismologists and geophysicists. The aim was to
provide a brief description of the state of the art in the major applications areas
(including references to methods and software), and to alert the audience to some
interesting recent work with potential application. The survey is divided into three
sections: linear systems, least squares methods, and eigenvalue problems. Methods for
dense and sparse matrices are considered in each section. Instead of the usual
plethora of references, we have chosen to mention a few particularly good references
for each of the subjects discussed.

2. LINEAR SYSTEMS

2A. Dense Stored Sysems (Ax = b)

As is well known, the standard algorithm here is Gaussian elimination, which
applied to the n X n matrix A directly produces the factorization A = LU with L unit
lower triangular and U upper triangular, using O(n’) operations. Pivoting is often
required as well, so that the elements of L and U produced are not large; row pivoting
is normally used which produces the factorization PA = LU, with P some
permutation matrix. Row and column pivoting can also be used; this produces
P,AP, = LU.

The computed solution ff from Gaussian elimination has the very nice property
that it is the exact solution of a perturbed system (A + ~3A)n= b, with
1) 6A 1) rf(n) . E, where f(n) is a slowly growing function of n and E is the machine

87
OOZl-9991/84 $3.00

Copyright 0 1984 by Academic Press. Inc.
All rights of reproduction in any form reserved.

88 J. M. VARAH

precision. This means that the residual lib - AxI1 is always about the size of the
machine precision, and that the error in ff satisfies

“;,;,;” < K(A) #f(n) * E,

where K(A) = I(A]I .]lA-’ I] = con 1 ion number of A. Thus it is very important when d’t’
solving any linear system to get an estimate of K(A); one should at least solve a
second perturbed system as well, ,4(x + 6x) = b + 6b, for then

116x)1 pJl
l’xl’ EK(A) ‘lbl’ ’

so that the condition number is approximated by the normalized ratios of the solution
and data.

A good reference for this material is Forsythe and Moler [6]. Many good codes
are now available, with many specializations possible with different structures
assumed in A. One reliable set of codes is LINPACK, available from Argonne
National Laboratories. This includes an estimation for K(A), and the authors have
also produced a “Users Guide” (Dongerra et al. [3]).

Although, in general, a dense n x n system requires O(n’) operations for the LU
factorization, sometimes the special nature of the matrix can be exploited to find
different solution algorithms which are faster. One example of this is the well-known
Levinson algorithm for Toeplitz matrices. This is O(n’) and has recently been shown
to be as stable as the usual LLT factorization for A positive definite (see [1 I).

2B. Matrices with Special Structure

When the matrix A of the linear system has a particular structure (in its nonzero
elements), it is usually advantageous to devise some modification of the normal
Gaussian elimination procedure. We mention two examples here.

(i) A banded. Suppose the nonzero elements of A are confined to a narrow
band along the diagonal, say with m nonzero elements on each side of the diagonal.
Then clearly the elimination procedure only involves m rows at each stage, and the
factorization involves only O(m2n) operations. It is particularly simple if pivoting is
not required during the factorization, so that A = LU, for then L and U have the
same banded form as A. In many cases the factorization will be stable without
pivoting (e.g., if A is diagonally dominant or symmetric positive definite) and it often
pays to try a factorization without pivoting, checking the growth of the elements as it
proceeds.

This simple factorization can also be used when only part of A is banded: for
example, consider Ax = b,

A= (; :), b=(i), x=(f),

LINEAR ALGEBRA COMPUTATION 89

with B banded. We can use the LU factorization for B to get x as follows: first form
B = LU, then using this, solve for p = B- ‘c, q = B - ‘jI Now we can get z from
z = (g - dTq)/(e - dTp) and y from y = q - zp. Of course, one could also perform
the LU decomposition of A itself with the same saving of time, but the above
illustrates how partitioning the matrix can lead to improvements.

(ii) A block-banded. Sometimes A will have a banded form where each
nonzero element is itself a matrix-the simplest case is block-tridiagonal,

A= A:
i

A=(;L3 B

Cl 0

B* c2 *
0 . * . - . *. .i

Working with the block-elements, one can generate a block-LU factorization

0

)(

u, c, 0

u2 c2
I * . * . .

* . * . 0

.).

Of course one must be careful that the factorization is stable just as in the scalar
case. Notice that no fill-in has occurred; the nonzero elements in the factorized
matrices occupy the same locations as in A.

A variant of this type of matrix occurs in systems arising in the solution of
boundary value problems in ordinary differential equations by the collocation
method. Then A has the form

A=

Fll
F, G,

F2
. . . .

F n-l G n-,

Gn I
with F,, G,p x p for i = l,..., n - 1, and F,,q X p, G,(p - q) Xp. Again, we can
factor A in a stable way without changing the structure by alternating the pivoting
and elimination procedure between rows and columns. See Varah [181 and Diaz,
Fairweather, and Keast [2].

2C. Sparse Systems

For large sparse systems of equations, there has been an enormous amount of
research done in the last several years, and we can only direct the reader to some

90 J. M. VARAH

good references. The material naturally divides itself into direct methods, where
variants of the LU factorization are used directly, and iterative methods, where
successive approximations of the solution are formed.

(i) Direct Methods. For general symmetric positive definite systems, where
pivoting is not required, a tremendous saving can be made by ordering the equations
and unknowns differently, so that when the factorization is performed, the amount of
work or storage required is lessened. One technique for doing this is the minimal
degree algorithm, which at each stage looks for the row with the fewest nonzero
elements.

When more structure is imposed on the matrix A, more specialized methods can be
used to great advantage. One example of this is the nested dissection algorithm of
George [7] which, applied to systems arising from n x n grid problems (finite element
problems, e.g.), reduced the time required from O(n”) to O(n”). Another example is
the fast Poisson solvers, specialized for solving the five-point discrete approximation
to the Poisson equation V’u =f on a rectangle. Using either a fast Fourier transform
approach or the cyclic reduction approach, the time required is reduced to
O(n’ log n). Codes for these Poisson solvers are available, for example, from
Lawrence Livermore Labs. See Swartztrauber [161.

Good references for direct methods on sparse matrices are George and Liu [S] and
Duff [4]. Duff also has papers on iterative methods. In addition, some codes are now
available: the Yale Sparse Matrix Package, available from the IMSL library, Houston
(see also Eisenstat, et al. [5]); SPARSPAK, developed by George and Liu, available
from the Waterloo Research Institute, University of Waterloo, Waterloo, Ontario,
Canada; and the Harwell Sparse Matrix Codes, available from the Computer Science
and Systems Division, UKAEA Harwell, England.

(ii) Iterative Methods. Here we attempt to approximate the solution of Ax = b
by a sequence of vectors xck), k = 0, 1, 2 ,... . The standard techniques like SOR and
AD1 are well known and well described in [19]. More recently, there has been
interest in solving symmetric positive definite systems by the conjugate gradient
technique. Here xck) is obtained from xfk-‘) and Ax’~-” in such a way that we
minimize the quadratic form (x - 2)’ A (x - 2) for 2 = xck) over the k-dimensional
subspace spanned by {x(l), Ax(‘),..., A k-‘~(1) }. Also convergence to the solution x
occurs in at most n steps, and in k steps if there are only k distinct eigenvalues of A.

Because of this last property, it seems to be a good idea to precondition the
problem: iterate using L -‘AL -* rather than A, choosing L so that the matrix has
eigenvalues clustered near unity. For example, one could use L from the Cholesky
factorization of a nearby matrix A + &I. This is called the incomplete Cholesky
factorization, and references are Meijerink and van der Vorst [14] and Man-
teuffel [131.

For unsymmetric sparse systems, in particular systems arising from elliptic PDEs
with large first order terms, some success has been reported by using the splitting

LINEARALGEBRACOMPUTATION 91

A=M-N, with M = (A + AT)/2 (if this is positive definite) and
N = -((A - AT)/2), giving the iteration

bfdk+ ‘) = Nxtk’ + b,

and accelerating this with the usual Chebyshev acceleration technique (see Manteuffel
[121).

3. LEAST SQUARES AND THE SINGULAR VALUE DECOMPOSITION

The basic linear least squares problem is to solve the overdetermined system
Ax = b, A m x n with m > n, by choosing x to minimize IJAy - b]], over all possible
n-vectors y. There are two basic methods for this, assuming A has full column rank
(=n): forming and solving the normal equations A ‘Ax = ATb, or performing a QR
factorization A = QR (Q orthogonal, R upper triangular) and solving the first n
equations of Rx = Q’b. When the columns of A are nearly linearly dependent (so
ATA is badly conditioned) the QR technique is more accurate, particularly if the
overdetermined system is nearly consistent. However, this dependency usually means
one is working with too many variables x and the ill-conditioning problem can be
removed by decreasing the number of variables.

When A is a large sparse matrix, then ATA is also probably sparse, whereas the
QR factors usually are not, so the normal equations become more attractive.
Recently, work has been done on more efficient ways to solve these normal equations
in the sparse case; for example, by using a preconditioned conjugate gradient
technique (see article by Bjorck in Duff [4]).

To determine whether the columns of A are linearly dependent, or more generally
what the effective rank of A is, the most useful technique is that of the singular value
decomposition (SVD): this forms A = UDVT with U and V orthogonal and D
diagonal with diagonal elements ci = singular values of A (a, > o2 ... > u, > 0). If E
is the noise level, a good measure of rank A is the number of singular values larger
than E. The SVD algorithm is due to Golub and his co-workers (see, e.g., Golub and
Reinsch [9]) and is available in the IMSL library or the NAG library in Oxford. A
good reference for this least squares material is Lawson and Hanson [lo].

One interesting application of the SVD is to ill-posed problems (e.g., some inverse
problems in geophysics). We are given an n x 12 system Ax = b with A ill-conditioned
and we want an approximate solution x of reasonable size with I(.4x - bll small, with
x perhaps expressed in terms of only the low-order modes (eigenvectors) of the
system. If one computes the SVD, the system becomes D(V’x) = UTb, or Dy = z,
and a “good” solution is obtained by taking yi = ~,/a, for i = l,..., k, and yi = 0 for
i > k. Then our solution is X(~) = ,YjJf (~,/a,) vci), i.e., in terms of only the first k
singular vectors of A. Typically k is chosen so that we include those singular vectors
whose corresponding singular values are above the noise level. See Varah [171.

92 J.M.VARAH

4. EIGENVALUE PROBLEMS

For dense stored matrices, there are standard QR-type routines available for the
Ax = Ax problem, for example, in EISPACK (available from Argonne National
Labs). This has various routines dependent on the structure and symmetry of A. For
A symmetric, the eigenvalues Ji are well-conditioned; that is, when the elements of A
are changed by O(E), each Ai + Izi + si, where si = O(E). Thus if the elements of A are
known to 5 digits, the eigenvalues should also be accurate to about 5 digits. This is
not true of the eigenvector components; they are only well conditioned for eigen-
values which are well separated. For eigenvalues which are close together, the
individual eigenvectors are poorly determined by the data; only the invariant
subspace spanned by the set of eigenvectors is well determined.

For a nonsymmetric matrix A, the QR method produces an orthogonal similarity
transformation to triangular form, which gives the eigenvalues on the diagonal, and
from which inverse iteration can be used to produce the eigenvectors. Now the
conditioning is more delicate; the eigenvalues may be poorly conditioned, but this can
be checked by calculating the condition numbers si for each Ai. If xci) and y”’ are the
normalized right and left eigenvectors, then si is the cosine of the angle between them,

For noise level E in the elements of A, the eigenvalue di will only be correct to
O(E/S~). Notice that for A symmetric, xci) = y”’ so si = 1. Most codes do not
automatically compute these si, but it does seem a good idea. Alternatively, as in
solving linear equations, one can instead compute the eigenvalues for A and a pertur-
bation A + 6A and gauge the accuracy in each Ai by the changes in the computed
eigenvalues.

Codes also exist (in EISPACK, e.g.) for the generalized eigenvalue problem
Ax = 23x. Usually A is symmetric and B symmetric and positive definite. If B is
positive definite, one method is to use the Cholesky factorization B = LLT and
convert the problem back to the normal (symmetric) problem L -‘AL -TV = Ax.
However, when B is nearly singular (yet still positive definite), this clearly produces
large elements and so gives unsatisfactory results, even though some of the eigen-
values Ai may be well determined by the problem. One alternative in this case is the
QZ algorithm of Moler and Stewart .[1 l] which simultaneously triangularizes A and
B, and which actually works for general complex matrices A and B.

For large sparse symmetric matrices, the Lanczos algorithm has enjoyed renewed
popularity lately. This forms a sequence of vectors {nci)} spanning the space
{o(1), ,&+I), A zy(‘) ,... } by the iteration

LINEARALGEBRACOMPUTATION 93

with pi chosen SO that]]Y(~’]I2 = 1 and Qi = u (i’TA~(i’. Then the tridiagonal matrix

has eigenvalues which approximate those of A. A good reference for this material,
and for symmetric matrices in general, is Parlett [151.

Finally, lest we leave the impression that all these problems are solved, consider
the generalized eigenvalue problem Ax = ABx with A and B banded, very large, and
unfortunately not symmetric. Such problems arise in the finite element solution of
structures problems in civil engineering, and one usually wants the eigenvalues L of
algebraically largest real part. If A and B were symmetric, we could use the Sylvester
inertia theorem to estimate the eigenvalues (see Parlett [151). And, if A and B were
not too large, we could resort to the QZ algorithm mentioned earlier. Instead, one is
left with very little in the way of proven techniques; about the best we can do is to try
a generalized Rayleigh quotient iteration, in which we guess vectors x(O), y”‘, and
k = 0, 1, 2 ,..., set

A y
(k)T/lx(k’

k+ 1 = y’k’TBX’k’

and solve

(A -1,+,B)~‘~+“=x(k), yck+ “T(A - Ak+ ,B) = Y'~'~.

Hopefully 1, --t k desired if we start fairly close to it, although this is not at all
assured.

REFERENCES

1. G. CYBENKO, SZSSC 1 (1980), 303.
2. DIAZ, FAIRWEATHER, AND KEAST, “Fortran Packages for Solvig Almost Block Diagonal Linear

Systems by Modified Alternate Row and Column Elimination,” Technical Report 148/81, Comp.
Sci. Dept., Univ. of Toronto, 1981.

3. DONGARRA, BUNCH, MOLER, AND STEWART, “LINPACK Users Guide,” Sot. Ind. Appl. Math.
Philadelphia, 1979.

4. I. DUFF, “Sparse Matrices and their Uses,” Prentice-Hall, Englewood Cliffs, N.J., 1980.
5. EISENSTAT, GURSKY, SCHULTZ, AND SHERMAN, TOMS, (1981), in press.
6. G. FORSYTHE AND C. MOLER, “Computer Solution of Linear Algebraic Systems,” Prentice-Hall,

Englewood Cliffs, N.J., 1967.
7. J. A. GEORGE, SZNUM 10 (1973), 345.
8. A. GEORGE AND J. LIU, “Computer Solution of Large Sparse Positive Definite Systems,” Pren-

tice-Hall, Englewood Cliffs, N.J., 198 1.

94 J. M. VARAH

9. GOLUB AND REINSCH, Numer. Math. 14 (1970), 403.
10. C. LAWSON AND R. HANSON, “Solving Linear Least Squares Problems,” Prentice-Hall,

Philadelphia, 1974.
11. MOLER AND STEWART, SZNUM 10 (1973), 241.
12. T. MANTEUFFEL, Numer. Math. 28 (1977), 307.
13. T. MANTEUFFEL, Shifted incomplete Cholesky factorization, Sparse Matrix Proceedings 1978 (Duff

and Stewart, Eds.), Sot. Ind. Appl. Math., Philadelphia, 1978.
14. MEIJERINK AND VAN DER VORST, Math. Compur. 31(1977), 148.
15. B. PARLETT, “The Symmetric Eigenvalue Problem,” Prentice-Hall, Englewood Cliffs, N.J., 1980.
16. P. SWARTZTRAUBER, SIAM Rev. 19 (1977), 490.
17. J. VARAH, SZNUM 10 (1973), 257.
18. J. VARAH, SZNUM 13 (1976), 71.
19. L. HAGEMAN AND D. YOUNG, “Iterative Methods for Linear Systems,” Academic Press, New York,

1982.

